深度学习算法——递归网络模型与卷积网络模型
¥79.9
数千家企业正在使用三节课企业版学习
无限制学习5000+门课程,200+精选学习专题
我们知道,深度学习作为一种通用框架可以实现绝大部分的信息收集与分析,其实质是通过构建具有很多隐层的机器学习模型和海量的训练数据、来学习提炼有效的特征,从而提升分类、预测的准确性。其中,递归神经网络(RNN)和卷积神经网络(CNN)便是深度学习领域中极具代表性的成熟算法。
本门课,我们将深入学习 RNN 和 CNN 两种神经网络。我们将从RNN的基础概述、网络细节、网络架构等三个部分进行展开学习。在 CNN 部分,我们将从CNN的应用解释、计算过程及参数开始,完成对 CNN 原理和应用的深入探究与学习。
基于本门课程,我们将帮助学员对递归网络模型与卷积网络模型实践有更加全面的认知和学习,完成核心技能实践。
课程有效期:
自购买课程之日起 365 天,部分参与营销活动产品以活动规则为准,请同学在有效期内学习、观看课程。
上课模式:
课程采取录播模式,请注意自学课无班级微信群、班主任带班及助教批改服务。
注:自学课不支持退款,确保你是真的需要再进行报名,报完名之后还请认真学习。